
SPRING 2025: MATH 540 DAILY UPDATE

Tuesday, March 11. The first fifteen minutes of class were devoted to Quiz 6. We then began a discussion of
how to find roots to quadratic polynomials modulo a prime p. Starting with f(x) = x2 + bx+ c, with p > 2,
we showed that f(x) has roots modulo p if b2 − 4c has a square mod p. Upon choosing e and d satisfying
2e ≡ 1 mod p and d2 ≡ b2 − 4c mod p, it followed that u := e(−b+ d) and v := e(−b− d) were roots of f(x)
mod p. This was just a mod p version of the quadratic formula. We illustrated this with a few examples,
including one for the class to try. We then gave the following definition.

Definition. Let p > 2 be prime. Suppose p ∤ a. Then a is quadratic residue mod p if a ≡ b2 mod p, for
some b ∈ Z. Otherwise, s is a quadratic non-reside mod p.

We then calculated the quadratic residues mod 5, 7, 11 and noted that half the non-zero residues mod 5,
7, 11 were quadratic residues. We then proved this by observing that if a is a primitive root of 1 mod p,

then the quadratic residues mod p were just a2, a4, a6, · · · , a
p−1
2 , mod p. We ended class by checking the

quadratic residues mod 5, 7, 11 against the following theorem.

Euler’s Quadratic Residue Theorem. For p an odd prime and a ∈ Z such that gcd(a, p) = 1, a is a

quadratic residue mod p if and only if a
p−1
2 ≡ 1 mod p.

Thursday, March 6. We continued our discussion of roots to polynomial equations modulo n. In particular,
we showed that if p is prime and f(x) ∈ Z[x] has degree d, then f(x) has at most d distinct roots modulo p.
This was followed by the important

Corollary. Suppose p is prime and p | (d− 1). Then f(x) = xd − 1 has d distinct roots mod p.

The corollary lead to the following

Definitions. (i) Given p and prime and a ∈ Z such that gcd(a, p) = 1, then the order of a mod p is the
least r such that ar ≡ 1 mod p. (ii) a ∈ Z is a primitive root of 1 modulo n if the order of a mod n is ϕ(n).

We then calculated the order of integers not divisible by 5, mod 5, and noted that 2 and 3 are primitive
roots of 1 mod 5. On the other hand, for any a ∈ Z such that gcd(a, 8) = 1, the only orders of elements
mod 8 are one and two. Thus, we saw that there are no primitive roots of 1 mod 8. This was followed by a
side discussion of roots of unity over C and primitive roots of unity over C. We ended class by proving the
following theorem.

Theorem. Suppose p is prime. Then there exists at least one primitive root of 1 mod p.

The proof of the theorem was based upon two lemmas that allowed us to make the following statements:

If we write p − 1 = qe11 · · · qerr as a prime factorizations, then there are qeii roots of xq
e1
i − 1 mod p, qei−1

i

roots of xq
ei−1

i − 1, showing that there must be qeii − qei−1
i elements 1 < ai ≤ p such that aq

ei
i ≡ 1 mod p

and aq
ei−1

i ̸≡ 1 mod p, so that the order of ai mod p is qeii . Thus, the order of a := a1 · · · ar modulo p is
qe11 · · · qerr = p− 1, i.e., a is a primitive root of 1 mod p.

Tuesday, March 4. Most of the class was devoted to discussing the Chinese Remainder Theorem (CRT):

Theorem. Suppose n1, . . . , nr ∈ Z are positive integers such that for all i ̸= j, gcd(ni, nj) = 1. Then for
all a1, . . . , ar ∈ Z, the system of congruences

x ≡ a1 mod n1

x ≡ a2 mod n2

...

x ≡ ar mod nr

has a solution in Z. Moreover, if x, y are solutions to the system, then x ≡ y mod N , where N = n1 ·n2 · · ·nr.
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We first proved the case n = 2 and worked an example, and then had the class work the following example:
Solve the system of congruences x ≡ 5 mod 6 and x ≡ 2 mod 11. We then noted that since 5 has a
multiplicative inverse modulo 6 and 7 has a multiplicative inverse modulo 11, we can also solve the system:
5x ≡ 5 mod 6 and 7x ≡ 2 mod 11.

We then proved the general case of the CRT as follows. Set Ni :=
N
ni
. Let ci be the multiplicative inverse

of Ni modulo ni. This is possible since gcd(ni, Ni) = 1 for all i. Then x := a1c1N1 + · · · + arcrNr is a
solution to the given system of congruences. This theorem was illustrated by an example in the lecture, and
an example worked by the class.

The remainer of the class was devoted to an initial discussion of the following: Given f(x) ∈ Z[x], we say
that a ∈ Z is a root of f(x) modulo n if f(a) ≡ 0 mod n, or equivalently, n | f(a). We also noted that this
was equivalent to saying that in Zn, f(a) = 0, where f(x) is the polynomial in Zn[x] obtained by reducing
the coefficients of f(x) mod n. We then noted that if a is a root of f(x) mod n, then so is b, for any b ∈ Z
satisfying a ≡ b mod n. Finally, we noted that if the degree of f(x) is d it is possible for f(x) to have more
than d roots mod n, as illustrated by f(x) = x2 − 1 which has four roots modulo 8. We also noted (but did
not prove) that this cannot happen modulo a prime.

Thursday, February 27. Exam 1.

Tuesday, February 25. The first fifteen minutes of class was devoted to Quiz 5, and in the remaining time,
the class worked in groups on practice problems for Exam 1.

Thursday, February 20. The first fifteen minutes of class were devoted to Quiz 4. This was followed by a
review of the definition of an equivalence relation and the definition of equivalence class, given an equivalence
relation. We then showed that if X is a set with an equivalence relation, then X is a disjoint union of its
distinct equivalence classes.

This was followed by a lengthy discussion of the realization of the rational numbers as the set of distinct
equivalence classes on the set of ordered pairs (a, b) of integers with b ̸= 0, under the relation (a, b) ∼
(c, d) if and only if ad − bc. We showed that if [(a, b)] and [(c, d)] are two such classes then the operation
[(a, b)] + [(c, d)] = [(ad+ bc, bd)] is well defined and left the corresponding well definedness of multiplication
as an exercise.

The last part of the class was devoted to the consideration of solving linear congruence relations of the
form ax ≡ b mod n. We noted we could ask for solutions to this equation in Zn or Z. We first observed that
if gcd(a, n) = 1, then the congruence equation has a unique solution, since a has a multiplicative inverse
modulo n. However, if gcd(a, n) > 1, we worked some examples where the congruence had not solution one
the one hand, and multiplce solutions on the other.

Tuesday, February 18. Snow day.

Thursday, February 13. We began class by discussing Gauss’s Theorem: n =
∑

d|n ϕ(d). We verified the

theorem in a few cases, and then the class worked through how the proof goes for n = 18, by writing out
the fractions 1

18 ,
2
18 , . . . ,

18
18 , then reducing each fraction to lowest term, and counting how many times each

denominator occurs - the denominators being the divisors of n. We noted each denominator d occurs ϕ(d)
times, which lead to an understanding as to how the proof works in general.

We then introduced the function τ(n) and σ(n), where τ(n) is the number of divisors of n and σ(n) is the
sum of the divisors of n. We then proved:

Theorem. For n > 1, with prime factorization pe11 · · · perr , with each ei ≥ 1, we have”

(i) τ(n) = (e1 + 1) · · · (er + 1).

(ii) σ(n) =
p
e1+1
1 −1
p1−1 · · · per+1

r −1
pr−1 .

We then began a discussion of equivalence relations, by giving the standard definition and the flowing
exams: (i) Equality on a set X is an equivalence relation; (ii) Fixing n > 1, then congruence modulo n
is an equivalence relation on Z. The details of this were given in the lecture of January 30; For the set
X := {(a, b) |a, b ∈ Z, with b ̸= 0}, and (a, b) ∼ (c, d) if and only if ad− bc = 0 is an equivalence relation.
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Tuesday, February 11. The first fifteen minutes of class were devoted to Quiz 3. Then we began a discussion
of the following theorems involving ϕ(n).

Euler’s Theorem. For n > 1 and a ∈ Z such that gcd(a, n) = 1, aϕ(n) ≡ 1 mod n.

We first did some easy examples verifying the formula directly. Then we used Euler’s theorem to: (a)
Calculate the one’s digit of 7222 and (b) Calculate the residue class of 12347865435 modulo 11. We also noted
that Fermat’s theorem, which states that for any prime p and any a ∈ Z, ap ≡ a mod p. This was followed
by giving a proof of Euler’s theorem.

We then discussed:

Euler’s Product formula. For n ≥ 1, ϕ(n) = n ·
∏

d|n(1−
1
p ).

After verifying the formula for n = 24, 42, we asked the class to try to write a proof of the case n = pe11 pe22 .
After discussing this case, we gave a proof of the formula that used the prime factorization of n.

We ended class with an initial discussion of Gauss’s Theorem which states: For any n ≥ 1, n =
∑

d|n ϕ(d).

Thursday, February 6. We began class by reviewing the definition of the Euler totient function ϕ(n)and
calculating some of its values. We then discussed and proved the following properties of ϕ(n):

Properties of the Euler totient function. Let ϕ(n) be the totient function. Then:

(i) If p is prime, ϕ(p) = p− 1.
(ii) If gcd(a, b) = 1, then ϕ(ab) = ϕ9a)ϕ(b).
(iii) If p is prime, and e ≥ 1, then ϕ(pe) = pe − pe−1.
(iv) If n = pe11 · · · perr is a prime factorization of n, with p1, . . . , pr distinct primes, then

ϕ(m) = (pe11 − pe1−1
1 ) · · · (perr − per−1

r ).

The proof of (i) was clear, the proof of (iii) followed by counting the positive integers less than or equal to
pe that are not relatively prime to pe, and the proof of (iv) was straightforward using an iteration of (ii)
together with (iii). Most of the class was devoted to a proof of (ii).

To get an understanding of the proof of (ii), we defined a function f : Z12 → Z3×Z4 given by f (̃i) = (i, î),

where ĩ is the residue class of i mod 12, i is the residue class of i mod 3 and î is the residue class of i mod 4.
We noted that this function was one-one and set up a one-one, onto correspondence between the elements of
Z12 that have a multiplicative inverse and the elements of Z3 × Z4 that have a multiplicative inverse. Since
there are ϕ(12) in the former set and ϕ(3)ϕ(4) in the latter, this explains property (ii) in this special case.

The general case proceeded in a similar fashion by first noting that an element in Za×Zb has a multiplicative
inverse if and only if each coordinate has a multiplicative inverse and the function f : Zn → Za×Zb given by
establishing the following facts about the function f : Zn → Za × Zb by f (̃i) = (i, î): (1) F is multiplicative
and (2) f is 1-1, and therefore onto. These properties implied that f gives a one-to-one, onto correspondence
between the elements of Zn that have a multiplicative inverse and the elements of Za × Zb that have a
multiplicative inverse. Since there are ϕ(n) in the former set and ϕ(a)ϕ(b) in the latter, this established
property (ii) in general.

Tuesday, February 4. The first fifteen minutes of class were devoted to Quiz 2. We then reviewed the
definition of what it means for a ∈ Z to be congruent to b modulo n, i.e., a ≡ b mod n if and only if n
divides a − b. We wrote out the distinct congruence classes (remainder classes) modulo n and showed how
to extend the modular arithmetic defined last time for remainders modulo n to all of Z by showing that if
a ≡ b mod n and c ≡ d mod n, then (a+ c) ≡ (b+ d) mod n and ac ≡ bd mod n. We then defined Zn to be
the number system {0, 1, · · · , n− 1}, where i can be taken to be any integer congruent to i modulo n. We
then noted that all the usual rules for arithmetic over Z work for Z modulo n, namely: For all a, b, c ∈ Z,
we have

(i) a+ b ≡ b+ a mod n
(ii) (a+ b) + c ≡ a+ (b+ c) mod n
(iii) 0 + a ≡ a mod n
(iv) a+ (−a) ≡ 0 mod n
(v) ab ≡ ba mod n

3



(vi) a(bc) ≡ (ab)c mod n
(vii) a(b+ c) ≡ ab+ ac mod n
(viii) 1 · a ≡ a mod n.

We then noted that, unlike the case for Z, where the only numbers with multiplicative inverses are 1,−1,
over Zn, we can have several numbers who have multiplicative inverses modulo n. After the class worked
several examples finding inverses modulo 7 and modulo 8, we proved the following:

Theorem. Fix n > 1. Then a ∈ Z has a multiplicative inverse modulo n if and only if gcd(a, n) = 1.

We ended class by defining Euler’s totient function ϕ(n), which gives the number of positive integers less
than n and relatively prime to n, which by the theorem above gives the number of elements in Zn that have
a multiplicative inverse.

Thursday, January 30. We began by discussing and proving the following theorem:

Theorem. Given a, b ∈ N, with a, b > 1, and gcd(a, b) ̸= 1. Write a = pe11 · · · perr qf11 · · · qfss and b =

cd1
1 · · · cdt

t qα1
1 · · · qαs

s , then gcd(a, b) = q
min{f1,α1}
1 · · · qmin{fs,αs}

s , where pi, qj , ck are primes, q1, . . . , qs are the
primes dividing both a and b and all exponents are greater than or equal to one.

We then defined the least common multiple - LCM - of two natural numbers a, b and presented the following:

Proposition. Given a, b ∈ N:
(i) The LCM of a and b, exists.
(ii) If e = LCM(a, b) and c is a common multiple of a and b, then c | e.
(iii) For a, b ∈ N as in the theorem above, LCM(a, b) = pe11 · · · perr cd1

1 · · · cdt
t q

max{f1,α1}
1 · · · qmax{fs,αs}

s

(iv) LCM(a, b) = ab
gcd(a,b) .

We then turned to a discussion of modular arithmetic. We began finding addition and multiplication
tables for the integers modulo 4 and modulo 5. We noticed that a product of non-zero remainders can be
zero, working modulo 4, but this does not happen modulo 5. We noted this latter fact followed from the
fact that the non-zero remainders modulo 5 have multiplicative inverses.

For fixed n > 1, e then defined two integers a, b to be congruent modulo n, denoted a ≡ b mod n if a− b
is divisible by n and then showed:

(i) a ≡ a mod n
(ii) If a ≡ b mod n, then b ≡ a mod n.
(iii) If a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n.

We ended class by noting that: The integers congruent to 0 mod 4 are all integers of the form 4n, with
n ∈ Z; The integers congruent to 1 mod 4 are all integers of the form 4n + 1, with n ∈ Z; The integers
congruent to 2 mod 4 are all integers of the form 4n+ 1, with n ∈ Z; The integers congruent to 3 mod four
are all integers of the form 4n+ 3, with n ∈ Z, finally noting that Z is the disjoint union of these four sets.

Tuesday, January 28. We began class with our first Quiz. We then reviewed the fact that the GCD of two
integers can be found using the Euclidian, where the last non-zero remainder is the GCD, and recalling that
backwards substitution yields s, t ∈ Z such that gcd(a, b) = sa+tb. We then discussed Blankinship’s Method
for finding gcd(a, b), and the s, t used to express gcd(a, b) in terms of a, b and did a few examples using this
method.

Blankinship’s Method. For b > a > 0, starting with

(
a 1 0
b 0 1

)
, perform a sequence of the row operation

of adding a multiple of one row to another, to end up with either

(
0 ∗ ∗
d s t

)
or

(
d s t
0 ∗ ∗

)
, then d = sa+ tb

is the GCD of a and b.

From here, we then proved the following

Fundamental Property of primes. Suppose p ∈ N is prime and p | ab, for a, b ∈ Z. Then, p | a or p | b.
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Using the fundamental property of primes we then gave an inductive argument proving the uniqueness part
of the Fundamental Theorem of Arithmetic, as stated in the lecture of January 21. We ended class by
discussing how to use prime factorization to find the GCD of two positive integers.

Thursday, January 23. We began class with the following definition.

Definition. Given integers d, n with 0 ̸= d, we say d divides n if n = dm, for some integer m. In this case
we write d | n. If d does not divide n, we write d ∤ m.

We followed this by discussing several properties of divisibility, the most most crucial being that if d divides
n1, . . . , nk, then d divides a1n1 + · · · + aknk, for all choices of a1, . . . , ak ∈ Z. We then asked the class to
take a couple of minutes at their desk to prove that if d > 0 and d divides both a and a+ 1, then d = 1.

We then had a lengthy discussion, including a proof of the:

Division Algorithm. Given integers a, b with > 0, there exist unique integers q, r such that: (i) b = aq+ r
and (ii) 0 ≤ r < a.

After giving a proof of the Division Algorithm, we used iterations of the algorithm (called the Euclidean
algorithm) to calculate the greatest common divisor of a few pairs of integers. We noticed that in each case,
the GCD f the original pair of integers was the last non-zero remainder in the Euclidean Algorithm. We
then formally verified that this process works to yield the GCD by induction. The critical point was the
following: Given integers a, b, with a > 0, if b = aq + r, as in the division algorithm, gcd(a, b) = gcd(r, a).
This was followed by establishing the two properties of GCD: (i) gcd(na, nb) = n gcd(a, b), for any n > 0
and (ii) If e | a and e | b, then e | gcd(a, b).

We ended class by mentioning Bezout’s Principle: For non-zero a, b ∈ Z, there exist n,m ∈ Z such that
gcd(a, b) = na+mb.

Tuesday, January 21. We began class by giving an over view of some of the topics to be covered this semester.
Then, we began an informal discussion of the following fact: Every natural number has a prime factor. Here
we argued heuristically, noting that this fact is a consequence of the following property of natural numbers:
There does not exist an infinite decreasing sequence of natural numbers. We then stated the following
principle, which we take as an axiom:

Well Ordering Principle. Every non empty subset of the natural numbers has a least element.

Using the Well Ordering Principle, we gave a formal proof of the existence statement in the following
theorem:

Fundamental Theorem of Arithmetic. Every natural number greater than or equal to 2 can be written
uniquely, up to order, as a product of prime numbers.

We noted that the uniqeness statement is not easy to prove, namely, if p1 · · · p2 = q1 · · · qs, with each pi, qj
prime, then r = s and, after re-indexing, pi = qi, for all 1 ≤ i ≤ r. The proof of this will require more tools
than we currently have available.

We then had a general discussion about the family of primes, first proving that there are infinitely many
primes, and noting that the proof gives a crude estimate for how far from a given prime one has to go
to encounter the next prime. We noted that in general, there are difficult theorems that say as a rule,
primes are more scarce as one goes further out among the natural numbers, but that a famous conjecture,
the Twin Prime Conjecture, hypothesizes that there are infinitely many prime pairs p, p + 2. We also
showed that one can create arbitrarily large gaps between consecutive primes by considering the sequence:
(n+ 1)! + 2, (n+ 1)! + 3, . . . , (n+ 1)! + (n+ 1), which consists of n consecutive composite numbers.

We ended class by presenting three forms of mathematical induction and working a couple of examples to
illustrate this proof technque. Here is the most general form we presented:

Mathematical Induction. Given a sequence of statements P (n), with n ≥ n0. The statements P (n) are
valid for all n ≥ n0 if the following two statements hold:

(i) P (n0) is valid.
(ii) P (n) is valid if each P (k) is valid, for 1 ≤ k ≤ n− 1.
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